

Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme

Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff and Rina Zeitoun

Speaker: Guillaume Barbu

CHES '16, Santa Barbara

August 17th 2016

1 Context of Application of our Attack

- 2 Horizontal Side-Channel Attack: A First Attempt
- **3** Improved Horizontal Side-Channel Attack
- **4** Practical Experiments
- **5** Countermeasure

Outline

1 Context of Application of our Attack

- 2 Horizontal Side-Channel Attack: A First Attempt
- 3 Improved Horizontal Side-Channel Attack
- 4 Practical Experiments
- **5** Countermeasure

Basic Principle

Each sensitive variable x is shared into n + 1 variables:

 $\mathbf{X} = \mathbf{X}_0 \oplus \mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \cdots \oplus \mathbf{X}_n$

Basic Principle

Each sensitive variable x is shared into n + 1 variables:

$$\mathbf{X} = \mathbf{X}_0 \oplus \mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \cdots \oplus \mathbf{X}_n$$

Security at order *n* [PR13, DFS15]

A sufficient condition for security at order *n*:

 $\sigma \cdot \mathbf{c} \geqslant \mathbf{n}$

with σ the standard deviation of the side-channel observations

Basic Principle

Each sensitive variable x is shared into n + 1 variables:

$$\mathbf{X} = \mathbf{X}_0 \oplus \mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \cdots \oplus \mathbf{X}_n$$

Security at order *n* [PR13, DFS15]

A sufficient condition for security at order *n*:

 $\sigma \cdot \mathbf{C} \geqslant \mathbf{n}$

with σ the standard deviation of the side-channel observations

What if
$$n > \sigma \cdot c$$
 ?

[PR13] *Higher-Order Side Channel Security and Mask Refreshing.* Prouff, Rivain, Eurocrypt 2013. [DFS15] *Making Masking Security Proofs Concrete.* Duc, Faust, Standaert, Eurocrypt 2015.

Secure Multiplication in Higher-Order Masking Schemes

Context of Application: computation of $x \cdot y$

- Inputs: $(x_i)_i$ and $(y_i)_i$ such that
 - $x_0 \oplus x_1 \oplus \cdots \oplus x_n = \mathbf{X}$
 - $y_0 \oplus y_1 \oplus \cdots \oplus y_n = y$
- Output: (*c_i*)_{*i*} such that
 - $C_0 \oplus C_1 \oplus C_2 \oplus \cdots \oplus C_n = X Y$

Secure Multiplication in Higher-Order Masking Schemes

Context of Application: computation of $x \cdot y$

- Inputs: $(x_i)_i$ and $(y_i)_i$ such that
 - $x_0 \oplus x_1 \oplus \cdots \oplus x_n = x$
 - $y_0 \oplus y_1 \oplus \cdots \oplus y_n = y$
- Output: (*c_i*)_{*i*} such that
 - $C_0 \oplus C_1 \oplus C_2 \oplus \cdots \oplus C_n = x y$

Use ISW/RP scheme [ISW03, RP10]

[ISW03] Private Circuits: Securing Hardware against Probing Attacks. Ishai, Sahai, Wagner, CRYPTO'03 [RP10] Provably Secure Higher-Order Masking of AES. Rivain, Prouff, CHES'10.

Algorithm 1 SecMult

```
Require: \bigoplus_i x_i = x and \bigoplus_i y_i = y

Ensure: shares c_i satisfying \bigoplus_i c_i = x y

1: for i = 0 to n

2: for j = i + 1 to n

3: r_{i,j} \leftarrow rand

4: r_{j,i} \leftarrow (r_{i,j} \oplus x_i y_j) \oplus x_j y_i

5: for i = 0 to n

6: c_i \leftarrow x_i y_i

7: for j = 0 to n, j \neq i do c_i \leftarrow c_i \oplus r_{i,j}

8: return (c_0, c_1, \dots, c_n)
```

$(x_0 y_0)$	$(r_{1,2}\oplus x_0y_1)\oplus x_1y_0$	$(r_{1,3} \oplus x_0 y_2) \oplus x_2 y_0$	\Rightarrow C_0
<i>r</i> _{1,2}	<i>x</i> ₁ <i>y</i> ₁	$(\mathbf{r}_{2,3} \oplus \mathbf{x}_1 \mathbf{y}_2) \oplus \mathbf{x}_2 \mathbf{y}_1$	\Rightarrow C_1
(<i>r</i> _{1,3}	<i>r</i> _{2,3}	x ₂ y ₂	$\Rightarrow c_2$

Context of Application of our Attack

2 Horizontal Side-Channel Attack: A First Attempt

- 3 Improved Horizontal Side-Channel Attack
- 4 Practical Experiments
- **5** Countermeasure

Horizontal SCA on ISW Countermeasure

Assumption

The attacker observes the manipulation of all x_i , y_i and $x_i y_i$

- 1 manipulation of each x_i y_j
- <u>n</u> manipulations of each <u>x_i</u> and <u>y_i</u>

$(x_0 y_0)$	$(r_{1,2} \oplus \underline{x_0}\underline{y_1}) \oplus \underline{x_1}\underline{y_0}$	$(r_{1,3} \oplus \underline{x_0 y_2}) \oplus \underline{x_2 y_0}$	\ ⇒	<i>C</i> 0
<i>r</i> _{1,2}	<i>x</i> ₁ <u><i>y</i>1</u>	$(\mathit{r}_{2,3} \oplus \mathit{x}_1 \mathit{y}_2) \oplus \mathit{x}_2 \mathit{y}_1$	\Rightarrow	C 1
$(r_{1,3})$	<i>r</i> _{2,3}	<i>x</i> ₂ <i>y</i> ₂	$\rightarrow \rightarrow$	C 2

Assumption: we get for $0 \leq i, j \leq n$:

$$\begin{cases}
L_i = h(x_i) + B_i(\sigma/\sqrt{n}) \\
L'_j = h(y_j) + B'_j(\sigma/\sqrt{n}) \\
L''_{ij} = h(x_i \cdot y_j) + B''_{ij}(\sigma)
\end{cases}$$

h(): Hamming weight B: Gaussian noise

Assumption: we get for $0 \leq i, j \leq n$:

$$\begin{cases}
L_i = h(x_i) + B_i(\sigma/\sqrt{n}) \\
L'_j = h(y_j) + B'_j(\sigma/\sqrt{n}) \\
L''_{ij} = h(x_i \cdot y_j) + B''_{ij}(\sigma)
\end{cases}$$

h(): Hamming weight

B: Gaussian noise

The intuition for the case k = 1

• If $x_i = 0 \Rightarrow \forall j \ h(x_i \cdot y_j) = 0 \Rightarrow \forall j \ L''_{ij} = B''_{ij}$

Assumption: we get for $0 \le i, j \le n$:

$$\begin{cases}
L_i = h(x_i) + B_i(\sigma/\sqrt{n}) \\
L'_j = h(y_j) + B'_j(\sigma/\sqrt{n}) \\
L''_{ij} = h(x_i \cdot y_j) + B''_{ij}(\sigma)
\end{cases}$$

h(): Hamming weight B: Gaussian noise

The intuition for the case k = 1

- If $x_i = 0 \Rightarrow \forall j \ h(x_i \cdot y_i) = 0 \Rightarrow \forall j \ L''_{ii} = B''_{ii}$
- If $x_i = 1 \Rightarrow \forall j \ h(x_i \cdot y_j) = h(y_j) \Rightarrow \forall j \ L''_{ii} = h(y_i) + B''_{ii}$

Assumption: we get for $0 \le i, j \le n$:

$$\begin{cases}
L_i = h(x_i) + B_i(\sigma/\sqrt{n}) \\
L'_j = h(y_j) + B'_j(\sigma/\sqrt{n}) \\
L''_{ij} = h(x_i \cdot y_j) + B''_{ij}(\sigma)
\end{cases}$$

h(): Hamming weight B: Gaussian noise

The intuition for the case k = 1

- If $x_i = 0 \Rightarrow \forall j \ h(x_i \cdot y_i) = 0 \Rightarrow \forall j \ L''_{ii} = B''_{ii}$
- If $x_i = 1 \Rightarrow \forall j \ h(x_i \cdot y_i) = h(y_i) \Rightarrow \forall j \ L''_{ii} = h(y_i) + B''_{ii}$

R Distinguish between $x_i = 0$ and $x_i = 1$

Attack Principle

- Build templates relative to the manipulation of all values of x_i, y_j and x_iy_j
- 2 Find the x_i maximizing the probability of the observation of a given tuple L_i, (L'_j, L''_j), ∀j

Finding *x*_i

• Compute a probability distribution for x_i:

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$
- For each y_j :
 - Compute a probability distribution for y_i:

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$
- For each y_j :
 - Compute a probability distribution for y_i:

•
$$L'_j \stackrel{ML}{\Rightarrow} \Pr[L'_j \mid \mathbf{y}_j = u], \ \forall u$$

Finding *x*_i

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$
- For each y_j :
 - Compute a probability distribution for y_i:

•
$$L'_j \stackrel{ML}{\Rightarrow} \Pr[L'_j \mid \mathbf{y}_j = u], \ \forall u$$

• Compute a probability distribution for x_i · y_j:

Finding *x*_i

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$
- For each y_j :
 - Compute a probability distribution for y_i:

• $L'_j \stackrel{ML}{\Rightarrow} \Pr[L'_j \mid \mathbf{y}_j = u], \ \forall u$

• Compute a probability distribution for x_i · y_j:

•
$$L_{ij}'' \stackrel{ML}{\Rightarrow} \Pr[L_{ij}'' \mid \mathbf{x}_i \cdot \mathbf{y}_j = u]$$

- Compute a probability distribution for x_i:
 - $L_i \stackrel{ML}{\Rightarrow} \Pr[L_i \mid \mathbf{x}_i = u], \ \forall u$
- For each y_j :
 - Compute a probability distribution for y_i:
 - $L'_j \stackrel{ML}{\Rightarrow} \Pr[L'_j \mid \mathbf{y}_j = u], \ \forall u$
 - Compute a probability distribution for x_i · y_j:
 - $L_{ij}^{\prime\prime} \stackrel{ML}{\Rightarrow} \Pr[L_{ij}^{\prime\prime} \mid \mathbf{x}_i \cdot \mathbf{y}_j = u]$
 - Which gives $\Pr[L'_i, L''_{ij} \mid \mathbf{x}_i = u], \forall u$

$$f_{\mathbf{L}|X_{i}}((L_{i},(L'_{j},L''_{i,j})),x_{i}) =$$

$$2^{-nk}f(L_{i},x_{i})\cdot\prod_{j=1}^{n}\left(\sum_{y}f'_{\mathbf{L}'|Y_{j}}(L'_{j})\cdot f''_{\mathbf{L}''|X_{i},Y_{j}}(L''_{i,j})\right)$$

Algorithm for Attack 1

Algorithm 2 Attack 1

Require: Leakages L_i , L'_i , L''_{ji} for all j, noise σ , number of shares n

1: for
$$x_p = 0$$
 to $2^k - 1$
2: $proba[x_p] = \log(d_{ML}(L_i, x_p, \sigma/\sqrt{n}))$
3: for each y_i
4: for $x_p = 0$ to $2^k - 1$
5: $proba[x_p] + = \log(d_{ML}(L'_i, L''_{ij}, x_p, \sigma, n))$
6: return x_i with $i = indexMax(proba)$

Numerical Experiments

Number of shares *n* as a function of σ to succeed with probability > 0.5

σ (SNR)	$0 (+\infty)$	0.2 (25)	0.4 (6.25)	0.6 (2.77)	0.8 (1.56)	1 (1)
n	12	14	30	73	160	284

Context of Application of our Attack

- 2 Horizontal Side-Channel Attack: A First Attempt
- **3** Improved Horizontal Side-Channel Attack
- 4 Practical Experiments
- 6 Countermeasure

• Improvement: Repeat the attack by starting with y_i

Numerical Experiments

Number of shares *n* as a function of σ to succeed with probability > 0.5

σ (SNR ₄ , SNR ₈)	$0_{(+\infty,+\infty)}$	0.2 (25, 17.67)	0.4 (6.25, 4.41)	0.6 (2.77, 1.96)	0.8 (1.56, 1.10)	1 (1, 0.7071)
n (for \mathbb{F}_{2^4})	2	2	3	6	13	25
n (for \mathbb{F}_{2^8})	5	6	8	11	16	21

Security at order *n* [PR13, DFS15]

A sufficient condition for security at order *n*: $\sigma \cdot c \ge n$

What if $n > \sigma \cdot c$?

[PR13] Higher-Order Side Channel Security and Mask Refreshing. Prouff, Rivain, Eurocrypt 2013. [DFS15] Making Masking Security Proofs Concrete. Duc, Faust, Standaert, Eurocrypt 2015.

Security at order *n* [PR13, DFS15]

A **sufficient** condition for security at order *n*: $\sigma \cdot c \ge n$

What if
$$n > \sigma \cdot c$$
 ?

Condition for our attack to work

Security at order *n* [PR13, DFS15]

A **sufficient** condition for security at order *n*: $\sigma \cdot c \ge n$

What if
$$n > \sigma \cdot c$$
 ?

Condition for our attack to work

Collect leakages on (y_j, x_iy_j) ISS Second order SCA

Security at order *n* [PR13, DFS15]

A **sufficient** condition for security at order *n*: $\sigma \cdot c \ge n$

What if
$$n > \sigma \cdot c$$
 ?

Condition for our attack to work

- Collect leakages on (y_i, x_iy_i)
 Second order SCA
- [CJRR99, GHR15, SVO10] $m = \mathcal{O}(\sigma_{y_i}^2 \cdot \sigma_{x_i y_i}^2)$

[CJRR99] Towards sound approaches to counteract power-analysis attack. Chari, Jutla, Rao, Rohatgi, Crypto'99.

[GHR15] A key to success - success exponents for side-channel distinguishers. Guilley, Heuser, Rioul, Indocrypt'15. [SVO10] The world is not enough: Another look on second-order DPA. Standaert, Veyrat-Charvillon, Oswald, Gierichs. Medwed, Kasper. Managard. Asiacryot'10.

Security at order *n* [PR13, DFS15]

A **sufficient** condition for security at order *n*: $\sigma \cdot c \ge n$

What if
$$n > \sigma \cdot c$$
 ?

Condition for our attack to work

- Collect leakages on (y_i, x_iy_i)
 Second order SCA
- [CJRR99, GHR15, SVO10] $\square n = \mathcal{O}(\sigma_{y_j}^2 \cdot \sigma_{x_i y_j}^2)$ $\square n = \mathcal{O}(\sigma^2)$

[CJRR99] Towards sound approaches to counteract power-analysis attack. Chari, Jutla, Rao, Rohatgi, Crypto'99. [GHR15] A key to success - success exponents for side-channel distinguishers. Guilley, Heuser, Rioul, Indocrypt'15.

[SVO10] The world is not enough: Another look on second-order DPA. Standaert, Veyrat-Charvillon, Oswald, Gierlichs, Medwed, Kasper, Mangard, Asiacrypt 10.

Security at order *n* [PR13, DFS15]

A **sufficient** condition for security at order *n*: $\sigma \cdot c \ge n$

What if
$$n > \sigma \cdot c$$
 ?

Condition for our attack to work

- Collect leakages on (y_j, x_iy_j) ISS Second order SCA
- [CJRR99, GHR15, SVO10]

$$n = \mathcal{O}(\sigma_{y_j}^2 \cdot \sigma_{x_i y_j}^2)$$
$$n = \mathcal{O}(\sigma^2)$$

If $n > \sigma^2 \cdot c$ is possible

Context of Application of our Attack

- 2 Horizontal Side-Channel Attack: A First Attempt
- 3 Improved Horizontal Side-Channel Attack
- **4** Practical Experiments
- 5 Countermeasure

Templates

Create Templates

Compute mean and variance over 200k observations for each x_i .

Average signal for each x_i (top left), Variance of signal for each x_i (bottom left), Signal to Noise Ratio (top right), Average signal for each x_i (Zoom on POI) (bottom right)

Insights on the Model

HW Templates

Compute mean and variance over 200k observations for each $HW(x_i)$.

Results Attack 1 (ML)

Simple attack results

Rank and probability of success averaged over 100 repetitions (1 $\leq n \leq$ 40).

Result

10 shares seem sufficient with KEA.

Experiments Conclusions

Comparison with numerical experiments

σ (SNR ₈)	0 (+∞)	1 (0.7071)	11 (0.25)
n (for numerical)	5	21	NA
n (for experiments)	NA	NA	10

Number of shares *n* as a function of the noise σ to succeed with *P* > 0.5 (Attack 1 with *k* = 8).

Probably the disparity with numerical experiments is due to the use of the 11 points with a multivariate attack.

Context of Application of our Attack

- 2 Horizontal Side-Channel Attack: A First Attempt
- 3 Improved Horizontal Side-Channel Attack
- 4 Practical Experiments

Algorithm 1 SecMult (ISW/RP)

```
Require: \bigoplus_i x_i = x and \bigoplus_i y_i = y
Ensure: shares c_i satisfying \bigoplus_i c_i = x y
 1: M_{ii} \leftarrow MatMult = (x_i \cdot y_i)_{1 \le i,j \le n}
 2: for i = 0 to n
 3: for i = i + 1 to n
 4: r_{i,i} \leftarrow rand
                r_{i,i} \leftarrow (r_{i,i} \oplus M_{ii}) \oplus M_{ii}
 5:
 6: for i = 0 to n
 7: c_i \leftarrow M_{ii}
 8: for j = 0 to n, j \neq i do
 9:
                C_i \leftarrow C_i \oplus r_{i,i}
10: return (c_0, c_1, \ldots, c_n)
```


Countermeasure

Recursive MatMult

Split x_i , y_i into four blocks and refresh masks.

Countermeasure

Each variable is now manipulated at most twice

$$\begin{pmatrix} x_{0}y_{0} & (r_{1,2} \oplus x_{0}y_{1}) \oplus x_{1}y_{0} & (r_{1,3} \oplus x_{2}y_{0}) \oplus x_{0}y_{2} & (r_{1,4} \oplus x_{3}y_{0}) \oplus x_{0}y_{3} \\ r_{1,2} & x_{1}y_{1} & (r_{2,3} \oplus x_{2}y_{1}) \oplus x_{1}y_{2} & (r_{2,4} \oplus x_{3}y_{1}) \oplus x_{1}y_{3} \\ r_{1,2} & r_{2,2} & x_{2}y_{2} & (r_{3,4} \oplus x_{2}y_{3}) \oplus x_{3}y_{2} \\ r_{1,4} & r_{2,4} & r_{3,4} & x_{3}y_{3} \end{pmatrix}$$

With

 $x = x \oplus RefreshMask$ $x = x \oplus RefreshMask$ $x = x \oplus RefreshMask$ $x = x \oplus RefreshMask$

Conclusion

- Horizontal SCA on Rivain-Prouff countermeasure
 - A first attempt with poor efficiency
 - An improved attack with more realistic results
 - Successful experiments

Conclusion

- Horizontal SCA on Rivain-Prouff countermeasure
 - A first attempt with poor efficiency
 - An improved attack with more realistic results
 - Successful experiments
- Can be performed if the order n is sufficiently high
 - For typical instances, about $n \approx 10$ is necessary

Conclusion

Horizontal SCA on Rivain-Prouff countermeasure

- A first attempt with poor efficiency
- An improved attack with more realistic results
- Successful experiments
- Can be performed if the order n is sufficiently high
 - For typical instances, about $n \approx 10$ is necessary

Perspectives

- Provide a proof of security of our countermeasure (against n² probes)
- Study the gap in between $n > \sigma c$ and $n > \sigma^2 c$
- Improve the countermeasure (cf. eprint)

Horizontal SCA and Countermeasure on the ISW Scheme

Thank you for your attention! http://eprint.iacr.org/2016/540